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Abstract 

This research paper explores the role of artificial intelligence (AI) algorithms in bottleneck detection and constraint 

management according to the Tank Theory of Constraints (TOC) in manufacturing. One ongoing management 

problem is that our constraints are often observed after the fact, i.e., after throughput has already been lost, simply 

because signals of downtime can be scattered among products, shifts, operators and operating conditions. To close 

this gap, we switch to a two–case study where we connect operational data and TOC-relevant, decision-ready 

information. In Case 1, production and downtime data are combined to analyse constraint effect (e.g., total amount 

of downtime minutes, downtime share and efficiency loss) and pinpoint "vital few" causes of flow interruption via a 

Pareto-style loss analysis; predictive modelling is applied next for estimating downtime magnitude and ranking 

improvement actions. In Case 2, a predictive maintenance context is adopted to predict failure-induced perturbations 

endangering the constraint with a train-only balancing strategy and an untouched test set leveraging real-world class 

imbalance and decision realism; explainability delivers most interesting risk drivers allowing for targeted preventive 

actions. Results indicate that AI algorithms can improve TOC practice by increasing bottleneck visibility, earlier 

actions and prioritization of constraint-focused improvements systematic manner. The study contributes a business-

oriented framework that would serve as an intermediate between AI outputs and executable TOC decisions that 

safeguard throughput and stabilise the production flow. 

Keywords: Theory of Constraints (TOC); Bottleneck Detection; Downtime Analysis; Predictive Maintenance; 

Machine Learning; Explainable AI (XAI); Decision Support. 

1. Introduction 

Manufacturing companies face a continuous operations paradox: even with continued investments in automation and 

lean initiatives, production flow is still subject to limiting few capacity constraint paradoxes (bottlenecks), that 

propagate delays, increase work-in-process (WIP) and decrease delivery reliability. (Hopp & Spearman., 2011; Thürer 

et al., 2017). The Theory of Constraints (TOC) makes a case for this phenomenon as it suggests that the performance 

of an entire system is heavily dependent on both the current constraint from which the performance is derived and the 
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organization's ability to identify, exploit and elevate the latter. (Gupta & Boyd, 2008; Goldratt, 2016) In practice 

though, many production environments are not static, and constraints are dynamic: the ideal bottleneck can move from 

machine to machine, product to product, shift to shift or upstream disruption to upstream disruption, making 

managerial diagnosis non-trivial and frequently reactive. (Kumbhar et al., 2022; Lai et al., 2021; Li et al., 2009).  

In business and operational perspective, late serial bottleneck detection has an apparent implication on throughput, 

unit cost and service level. (Buer, et al., 2018; Ivanov, et al., 2025) When bottlenecks are discovered after queues form 

and schedules are missed, managers tend to react expensively: with expedited orders, overtime work or rework that 

may help secure output for the time being, but which can not only impact profitability, but also workforce 

sustainability. (Helo & Hao, 2017; Tarafdar et al., 2019) Therefore, not only technical problems but also the 

operational governance problems associated with the performance management and decision quality under uncertainty 

are the increase of bottleneck visibility and strengthening of early-warning capability (Mikalef et al 2019; Wamba et 

al., 2017). 

At the same time, the adoption of Industry 4.0 has provided greater access to shop-floor data (machine signals, 

downtime logs, contextual information in the sense of products and operators) to facilitate a transition to an evidence-

based constraint management approach (as opposed to experience-based) (Frank et al., 2019; Xu et al., 2018)  Recent 

operations and manufacturing operations display though that data driven approaches can be used to increase the 

transparency of operations by transforming varied production logs into action indicators of loss, threat and flow 

subversion  (Bokrantz et al., 2020; Ghobakhloo, 2020) Nonetheless, numerous contributions are still technology-

oriented (e.g., focusing on algorithms and accuracy), without addressing the managerial challenge that pushes in TOC 

practice that asks how AI-based analytics can be converted into constraint-based decisions and routines of sustainable 

improvement (Dubey et al., 2020; Sony & Naik, 2020). Figure 1 visually outlines the conceptual framework of the 

research by bridging the two concepts that are TOC-based constraint management and AI-based diagnostics, early 

warning systems, and actionable decision support in manufacturing activities. 

 

Figure 1: AI-driven constraint management in manufacturing: integrating TOC logic with data-driven diagnosis, 

early warning, and actionable insights to support flow stability and throughput protection. 
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 Artificial intelligence (AI) and machine learning (ML) are being adopted more in manufacturing, i.e., forecast or 

schedule support, anomaly detection and predictive maintenance. (Lee et al., 2018; Zhang et al., 2019) For predictive 

maintenance in particular, systematics of reviews demonstrate that ML can identify precursors to a failure down the 

road as weak signals and hence diminish unplanned downtime (directly related to TOC, where defections often 

"create" or "move" constraints through sudden capacity reductions). (Carvalho et al., 2019; Zonta et al., 2020) 

However, deployment of them in operations is often limited by the "last-mile problem", i.e., even good models not 

being able to impact decisions if outputs are uninterpretable, do not align with operational KPIs or cannot be easily 

plugged into a decision making adjoined system (Rudin, 2019; Rai, 2020). 

Explainable AI (XAI) has gained traction as a manager enable that could allow for transparent model outputs in 

support of accountability, learning and action. (Arrieta et al., 2020; Vilone & Longo, 2020) Interpretability is 

particularly important in industry as managers need to justify interventions (maintenance decision, line balancing and 

change-over policies, training or standard work update) and shop floor decisions are assessed with respect to 

operational performance such as throughput, stability or delivery. (Moosavi et al., 2024; Holzinger et al., 2020) As a 

result, the operational sense explicit spanning the visualization of AI is bigger than "predicting better", but also 

concerns enabling diagnosis (which drives the constraint), prioritization (which causes dominate problems), and 

governance (how decisions are standardized and monitored) (Barredo et al., 2019; Samek et al., 2019). 

This research paper extends a managerial framing of AI within TOC and locates the AI analytics as supportive 

decision-making tool for constraint identification and constraint protection, rather than mere technical classification 

or regression exercise (Kumbhar et al., 2022; Subramaniyan et al., 2021). In particular, we define bottleneck 

management as a two-fold managerial capacity: (1) diagnostic ability to objectively assess and quantify the operation 

implications of bottlenecks and their most detrimental loss contributors; (2) setting up early-warning signals for events 

that endanger constraint stability (e.g. spiritual machine failure) (Ivanov & Dolgui, 2021; Wenzel et al., 2020) This 

resource-based perspective is consistent with operations strategy research that prioritizes the conversion of digital 

analytics into more effective routines for improving flow, reliability and resource utilization (Buer et al., 2018; Tang 

et al., 2024). 

From a methodological point of view, the research is set up as a two-case study to illustrate how AI makes compatible 

TOC contributions at different managerial questions and data realities. (Voss et al., 2010) Case 1 makes use of 

operating production and downtime logs to measure bottleneck losses and ascertain the "vital few" downtimes causes 

according to a TOC-logical loss focus (e.g., Pareto-type patterns). (Mourtzis et al., 2020) Case 2 builds an early-

warning risk signal for machine failure and interprets the drivers with strongest associated on failure, which enable 

to perform proactive constraint protection using large predictive maintenance datasets. 

Our primary contribution is managerial in nature: We demonstrate how AI can reinforce ToC practice by; (a) 

accelerating and making more reliable the bottleneck detection processions, (b) quantifying the operational impact of 

constraint-related losses and (c) allowing proactive interventions which will stabilize the constraint variable and 

preserve throughput. The contribution attends to requests in operations and Industry 4.0 research for the unification 

of analytics with improvement logics (not showcasing analytics as an end to itself), and draw out implications for 

operational decision-making, governance. In this way, the research seeks to assist academics and practitioners who 

are interested in deploying AI in a manner that directly enhances flow, which is conducive for removing bottlenecks 

and stabilizing production in manufacturing systems. 

1.1 Research Questions 

RQ1. How can AI-enabled analytics be structured into a TOC-aligned decision-support pathway that makes 

bottlenecks operationally visible and quantifies flow loss in manufacturing? 
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RQ2. To what extent can AI-based early warning protect constrained (or near-constrained) resources under rare-event 

conditions, while preserving deployment realism through an untouched test set? 

RQ3. How can explainability outputs be translated into governance-ready operational levers (dashboards, SOP 

triggers, escalation rules) that support constraint protection and intervention prioritization? 

1.2 Contribution  

• TOC decision contribution proposes a business-oriented pathway that links heterogeneous shop-floor data to 

executable TOC steps (identify–exploit–subordinate–elevate) through quantified flow-loss indicators and 

prioritization logic. 

• Deployment-realistic analytics contribution demonstrates a rare-event evaluation design (train-only 

balancing with an untouched test set) that aligns early-warning assessment with operational prevalence and 

managerial generalizability. 

• Actionability contribution translates predictive outputs into intervention design via explainability, providing 

a governance-ready basis for monitoring policies and preventive actions that protect throughput-critical 

resources. 

2. Literature Review 

2.1 Bottlenecks and the Theory of Constraints in contemporary manufacturing 

In the field of operations performance, bottlenecks (often presented as system constraints) are important because 

they control throughput and lead times and contribute to exacerbating variability in the production process (Telles et 

al., 2020; de Jesus Pacheco et al.,2021). In the TOC, the constraint is not only a technological limitation of a machine 

but also a managerial focus which leads to understand where efforts for improvement can produce more system level 

returns (e.g., enhancement of throughput rather than increasing local efficiency) (Telles et al., 2020; de Jesus Pacheco 

et al., 2021). Recent research in operations highlights that under Industry 4.0 constraints are still important, but now 

they are more volatile as a result of product mix volatility, shorter runs and changeovers, multi-skilling labor demand 

(Telles et al., 2020; de Jesus Pacheco et al., 2021; Luiz et al., 2025). 

Post-2018 literature has consistently pointed the difficulty on "finding the constraint" in flow where losses are 

decomposed into micro-stoppages, set-up loss, quality rework and material interruption deteriorating flows even 

when no single station is permanently saturated (Telles et al., 2020; de Jesus Pacheco et al., 2021). As a result, TOC 

practice and operation analytics have more frequently met halfway, via data traces (time stamps, downtime logs, 

sensor streams) that flow through the enterprise to empirically locate where flow is being blocked and why (Telles 

et al., 2020; de Jesus Pacheco et al., 2021). This development is consistent with restated contemporary operations 

management views that emphasize end-to-end flow and delivery reliability, over disconnected resource-availability 

measures, especially in settings where service guarantee, cost and responsiveness are traded-offs (Telles et al., 2020; 

Luiz et al. 2025). 

2.2 From "static constraints" to data-driven bottleneck detection 

Classical bottleneck identification methodologies (e.g. based on utilization heuristics, queue length inspection or 

deterministic line balancing) are still useful but can be misleading in stochastic and high-mix environments where 

the bottleneck might "travel" over periods and product families (Subramaniyan et al., 2020; Mahmoodi et al., 2022). 

In return, the 2018-2025 literature has evolved to data-driven bottleneck detection that combines event logs, down 
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time factorization and time-based measures including active duration, waiting time and loss accumulation 

(Mahmoodi et al., 2022). Such methods have especially been in harmony with TOC since they make the concept of 

the constraint an observable mechanism of loss (most causes of downtime) and not in the form of a capacity-like 

abstract concept (Subramaniyan et al., 2020; Mahmoodi et al., 2022; Roser et al., 2015). 

A different stream highlights the applicability of a Pareto-style breakdown of losses, that is, to find a small set of 

major causes with high proportion of all lost time since it would facilitate managerial priorities and it is compatible 

with the focusing logic of TOC (Subramaniyan et al., 2020; Telles et al., 2020). In a practical operation sense, 

bottleneck detection turns into a decision-support task:(i) quantify loss, (ii)assign loss to sources and context 

(product, shift, operator effect, calendar effects), (iii) select improvement interventions with the highest expected 

throughput impact (Subramaniyan et al., 2020; Mahmoodi et al., 2022). 

2.3 AI-enabled operations analytics and predictive maintenance as "constraint protection" 

Against this background, research is beginning to emerge that posits AI as a technology that develops operational 

resilience predicting disruptions risks and enforcing preventive operations ahead of axiological performance 

collapses (Carvalho et al., 2019; Zhang et al., 2019; Zonta et al., 2020). Predictive maintenance (PdM) is especially 

important for TOC since it can be seen as "protecting the constraint" against downtime, which helps to stabilize flow 

and ensure throughput (Carvalho et al., 2019; Zhang et al., 2019). Two recent systematic reviews stress that ML-

based PdM has evolved from PoC models to decision-centric pipelines consisting of pre-processing, balancing and 

the evaluation strategies which better capture operational rarity (rarity for failures but also costly) (Carvalho et al., 

2019; Zhang et al., 2019). 

In terms of operation, the product is not its model but the management capacity it brings early signs, planning and 

prioritizing maintenance plan (shocks) emergency stops and improved delivery performance (Carvalho et al., 2019; 

Zonta et al., 2020). (Papazachos et al., 2018) This literature is becoming more and more conclusive about the 

necessity for evaluation to focus on metrics that measure decision quality under class imbalance (such as precision–

recall behaviour), since false negatives can result in the costly interruption of lines and missed delivery commitments 

(Carvalho et al., 2019; Zhang et al., 2019). Consequently, there is a strong tendency to visualize PdM not as a 

classical classification problem but rather as a risk management tool from the production flow perspective (Zhang et 

al., 2019; Carvalho et al., 2019; Cheng et al.,2022). 

2.4 Explainable AI and adoption in manufacturing decision contexts 

A pervasive blockage to putting AI into use operationally is the "trust–action gap": managers may trust that models 

predict well, but still unable to act on model outputs without a sensible explanation that aligns with operational logic 

and accountability needs (Puthanveettil Madathil et al. 2025; Arrieta et al. 2020; Rudin, 2019; Ahangar et al., 2025). 

Research in XAI claims that explanations are not "icing on the cake;" instead, they form governance and decision 

support mechanisms to enable stakeholders verify if a model's behaviour is aligned with the domain reality, safety 

boundaries and improvement interests (Ahangar et al., 2025; Arrieta et al., 2020; Rudin, 2019; Tzionis et al., 2025; 

Pashami et al., 2023). 

In smart manufacturing, recent literature goes on to suggest that explainability is especially important as a 

misclassification can result in unnecessary stoppages (over-maintenance) or undetected failures (under-maintenance), 

both of which may negatively impact the throughput and customer service (Puthanveettil Madathil et al., 2025; Arrieta 

et al., 2020). Translated to TOC, explainability makes the translation from analytics to focus decisions stronger: it 

helps rationale why this constraint-protective treatment is recommended and which operational levers are most 

strongly associated with risk (Moosavi et al., 2024; Rudin, 2019). Finally, the literature warns against judging the 
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quality of explanation on trustworthiness alone and to evaluate explanation quality in terms of reliability due to 

misleading explanations causing ill-advised managerial action (Arrieta et al., 2020; Rudin, 2019; Ahangar et al., 

2025). 

2.5 Synthesis and research gap: toward TOC-aligned AI that is business-oriented 

Throughout these streams, a consensus is building that the most impactful contributions are achieved when AI is 

delivered as part of an operational logic able to (i) identify and quantify flow constraints, (ii) prioritize improvement 

causes by impact(iii) and secure early warning and interpretable diagnosis that protect throughput (Telles et al., 2020; 

Carvalho et al., 2019). Nevertheless, even in many of those papers bottleneck analytics and predictive maintenance 

are considered as independent technical fields to be studied independently (de Jesus Pacheco et al., 2021; Arrieta et 

al., 2020). This provides a rationale for a TOC based framing where AI is evaluated by its contribution to managerial 

action constraint identification, constraint exploitation, and constraint protection, rather than by accuracy alone (Telles 

et al., 2020; Rudin, 2019). 

3. Methodology 

The present research paper takes the two-case research design and reports how AI may be employed to modernize 

TOC in manufacturing by better identifying the bottlenecks and enabling a faster managerial response to them. The 

methodological logic is decision support rather than purely technical: AI is considered as an operational analytics 

capability helping managers (i) to identify a constraint, (ii) measure its impact on the flow, and (iii) anticipate 

disruptions which will spread congestion and throughputs loss. 

The two cases are intentionally complementary: Case 1 focuses on diagnosing constraint based on downtime and 

productivity evidence (identifying and quantifying the bottleneck and its drivers), whereas Case 2 concentrates on 

early warning and prevention (predicting failures that threaten the constraint and destabilize flow), which destabilize 

flow. As a set, the cases make TOC's managerial cycle of identify → exploit → subordinate → elevate into an 

operational tool by giving concrete and quantified inputs to strive for at each step. 
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Figure 2: Two-case methodology for AI-enhanced TOC decision support. 

Figure 2 gives a full process overview of the research workflow and shows the two cases complementarily facilitating 

TOC decision making. In Case 1, the constraint loss is measured by downtime and productivity data from (constraint 

diagnosis) while in Case 2 an early warning signal for failure risk is constructed to protect constraint stability 

(prevention). The aggregated results allow the localization of constrains early warning and impact-based 

prioritization. 

3.1 Context and Data Sources (Two Operational Cases): 

Case 1: TOC-Oriented Downtime and Productivity Evidence (Small-Sample Operational Case) 

Case 1 is based on shop-floor operational information recording line productivity and downtime at the batch level. 

This dataset is created by combining multi operational files that are acquired into (i) line productivity logs (batch 

timing and operator, shift news context), (ii) downtime logs (downtime minutes, by factor, cause per batch), (iii) a 

dictionary of the downtime factors (cause descriptions and whether operator error is involved), and (iv) product master 

file (product attributes and reference-standard batch time). The resultant integrated dataset is an operational "constraint 

http://www.ijtbm.com/


International Journal of Transformations in Business Management                                    http://www.ijtbm.com 

 

(IJTBM) 2026, Vol. No. 16, Issue No. I, Jan-Mar                                          e-ISSN: 2231-6868 p-ISSN: 2454-468X 

 

47 

 

INTERNATIONAL JOURNAL OF TRANSFORMATIONS IN BUSINESS MANAGEMENT 

analytics" view at the batch level where every batch is tied to its observed downtime losses and related contexts 

(Pambudi, 2025). Case 1 deliberately chooses a small sample plant- level diagnostic framework due to the need of 

performing not population wise prognostic but constraint-oriented loss localisation and prioritisation information 

under data constraints typical of applied operations settings. Both downtime burden and Pareto-style concentration of 

dominant causes, being decision-oriented TOC outputs by nature, can be directly calculated from the batch-level 

table. Although the number of samples restricts generalizability, it enhances the external (contextual) validity as well 

because results are rooted in shop-floor loss dimensions and replication logic rather than sampling logic. 

While the size of the sample is small (consistent with limited or local access to plant data that is typical in applied 

Operations Research (OR)), this case fits within the scope of managerially diagnosable in that it allows for: (i) ranking 

highest damage downtime causes (loss concentration); (ii) comparison of current performance versus standard, and 

(iii) quantification of bottleneck losses in time. 

 

Case 2: Predictive Maintenance Evidence for Constraint Protection (Large-Sample Operational Case) 

Case 2 is based on a larger manufacturing dataset (AI4I 2020 predictive maintenance) with operational sensor/process 

measurements and machine failure (Matzka, 2022); it represented through a binary measure. The setting provided by 

the dataset corresponds naturally to constraint protection: emergences are relatively rare (class imbalance), as in actual 

manufacturing plants where disruptive breakdowns do not often occur, but they result in disproportionate flow loss. 

The case is intended to enable manager's prevention by predicting the risk of failure as an early warning that can be 

used in scheduling maintenance, setting operating regions, weigh resource allocation and which resources are more 

likely to fail - especially among bottleneck resources. 

Case 2 uses a widely studied predictive-maintenance dataset as a controlled evidence base to test the governance and 

evaluation logic required for constraint protection under rare-event conditions. The value of this case is 

methodological and managerial: it demonstrates how an early-warning system can be assessed under deployment-

realistic class imbalance (untouched test prevalence), how thresholds operationalize risk appetite, and how 

explainability can anchor intervention design. Accordingly, the case is presented as transferable decision logic rather 

than a direct representation of any single plant's sensor ecosystem or cost structure. 

3.2 Data Preparation and Integration Procedures (Managerial Rationale) 

Case 1: Data Cleansing, Integration and TOC Variables 

Case 1 performs data preparation in accordance with sound operational analytics practice: (re)producing 

comparability across logs, resolving key mismatches and creating interpretable TOC indicators. 

i. Data cleaning and validation: column names were normalised, duplicates were removed, next the 

downtime factor columns were converted to numeric minutes. 

ii. Downtime consolidation: total downtime minutes per batch was calculated as the sum of all different 

downtime causes; "top downtime cause" by batch for managerial rank‐ordering (Pareto). 

iii. Time alignment and duration measurement: start and end timestamps were created from date and time 

due fields; hours in warm-up, batch duration was calculated in minutes, incorporating an overnight 

adjustment when the end time extends beyond midnight. Including shift of end-time overnight. 
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iv. Operational integration: productivity records were merged with product attributes and downtime causes 

using batch and product IDs (standardized to consistent formats). 

v. TOC-relevant feature engineering: managerial indicators were created: 

 

o Total downtime of system minutes: (proxy for constraint impact / lost productive time). 

o Downtime fraction (downtime per processing time giving how far from the flow capacity value). 

o Efficiency factor ((standard/minimum batch time relative to actual duration, indicating productivity 

loss). 

o Temporal context variables (hour, day-of-week, month) for shift/seasonality insights. 

 

These procedures generate a coherent dataset that addresses two management decisions: (i) constraint diagnosis 

involving Pareto of downtimes and operational segmentation; and (ii) impact quantification by predicting downtime 

magnitude from operational conditions. 

Case 2: Data Preparation, Risk-Oriented Features, and Leakage Control 

Preparation Case 2 is motivated by a business requirement: the predictions should be deployable to serve as decision 

support; therefore, preprocessing is performed only on training data to excludes overfitting and artificially inflated 

performance. 

i. Removal of non-actionable identifiers: ID-like features were removed to avoid learning spurious patterns and 

facilitate understanding for managers. 

ii. Train–test split: the dataset was split into a training and held-out test using stratification to maintain the 

inherent low prevalence of failure events for both sets. More importantly, the test set is left completely 

untouched, as in real operational deployment. 

iii. Operational feature engineering: to increase manager interpretability and strengthen the link between process 

physics and failure risk, a small number of explainable, operations-relevant derived variables were included 

(e.g., temperature gap, power proxy, wear-speed interaction). 

iv. Outlier treatment (train-only): numerical features were minorized/clipped using quantiles from the training 

data to reduce distortion caused by extreme values; transformation was designed in a deployment-acceptable 

change. 

v. Handling of mixed data types: Numeric features have been imputed and scaled; Category features have been 

imputed and encoded (one-hot) so that its representation remains consistent across the folds. 

3.3 Modelling as Decision Support: 

Case 1: Quantifying Constraint Impact via Downtime Regression 

 Case 1 represents downtime minutes as an indicator for impact of a constraint. A set of candidate prediction models 

were cross-validation and performance presented in terms of MAE, RMSE and R2. The approach assists managers 

by making scenario-like estimations of downtime impact for different operational conditions (product/operator-time 

context), and so in prioritising improvement actions where losses are likely to be the largest. 
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To strengthen reliability of the predictive models, an ensemble approach (stacking regression) was implemented using 

the top-performing learners as base estimators and a simple final estimator. In business terms, the ensemble model 

represents a robust forecasting mechanism that reduces dependence on one model's assumptions and improves stability 

for managerial use. 

Case 2: Predicting Failure Risk to Protect Flow (Classification) 

In case 2, the failure risk is modelled as an early warning signal to protect throughput, i.e. reduce unplanned stoppages 

in particular if the at-risk machine is a "bottle neck" machine. 

An important methodological decision is how to deal with class imbalance. Instead of balancing total dataset (which 

would distort deployment reality), we balance only within training folds. This keeps the test distribution as the 

performance standard by which learning algorithms are judged while providing sufficient data to allow an algorithm 

to learn rare failure patterns. 

Cross-validation was used to compare candidate models with metrics selected for managerial implications under 

imbalance: 

• PR-AUC (average precision) to measure the quality of decision making when failure is a rare event. 

• ROC-AUC for ranking quality. 

• F1-Recall-Precision to characterize trade-offs between missing failures and false alarms. 

A stacking of those best candidates formed a model that generalizes well. Furthermore, an out-of-fold threshold 

selection technique was applied to determine a classification threshold that maximizes Training F1, indicating 

managerial preference for trading missed failures with false alarms. 

3.4 Visual Analytics and Interpretability for Managerial Use (XAI) 

In order to transform output into operational action (instead of abstractions such as accurate statistics), the study also 

provides interpretable visual evidence: 

• Case 1: histogram views of downtime and duration, and a Pareto-like ranking of top downtime causes to support 

TOC prioritization ("vital few causes"). 

• Case 2: a training vs. test class distribution plot to visualize that balancing is performed only during the training 

stage; performance curves (ROC and PR) to remark on risk discrimination; and an assessment of permutation 

importance in the held-out testing set to identify the most influential operational drivers of failure risk. Feature 

importance is reported with actual feature names to assist in actionable interpretation (e.g., wear-based, torque-based, 

or failure mode indicators), to help managers turn findings into maintenance and operational practices. 

Methodological Steps: 

To present the methodology in a structured, business-ready way, the study follows these steps: 
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a. Formulate TOC decision problem: enhance flow by identifying and controlling constraints and their 

disturbances. 

b. Select complementary cases: diagnostic (downtime/bottleneck) and preventive (the risk of failure). 

c. Prepare datasets: clean, validate, integrated (Case 1) and pre-processed with leakage controlled 

(Case 2). 

d. Engineer TOC-relevant indicators: the share of downtime, the ratio of efficiency, and interpretable 

risk proxies. 

e. Establish evaluation logic: cross-validation for reliability; held-out test for deployment realism. 

f. Address operational imbalance: apply balancing only inside the train folds to preserve real test 

conditions. 

g. The study adheres to the following phases to offer the methodology in a systematic, business-ready 

format: 

h. Compare candidate decision models: compare many decision algorithms using imbalance-

cognizant metrics. 

i. Build robust decision support: create stacking ensembles for both stability and generalization. 

j. Select decision thresholds: tune threshold based on out-of-fold prediction to match managerial trade-

off. 

k. Explain drivers for action: translating outputs to operational priorities with Visual Analytics and 

Permutation Importance.  

In this paper, the methodology is business oriented. Instead of considering AI as an independent end, this methodology 

treats AI as a type of measurement tool and decision-support mechanism integrated into TOC: it improves (i) The 

visibility of where flowage is impeded; (ii) The quantification of impact of impediments in loss-of-operational-time 

terms, and (iii) Advance warning about disturbances that threaten throughput. Such a framing can allow managerial 

interpretation in terms of priority-setting, resource allocation, preventive planning and flow improvement, serving to 

"ground" the value contribution in operational and business performance results rather than merely computational 

novelty. 

4. Result and Discussion 

This section presents results from two complementary case studies that use Theory of Constraints (TOC) instrumented 

as a decision support system to optimize production flow. The results are organized in such a manner that they facilitate 

the implementation of TOC: (i) revealing the constraint, (ii) (ii) measuring the loss of capacity caused by flow 

interruptions, (iii) guarding the constraint using early warning and (iv) converting the insight into intervention 

priorities. Therefore, the emphasis here is placed on bottleneck visibility and throughput maintenance and support of 

management as opposed to algorithmic details. 

4.1 Case Study 1: TOC Diagnostics Bottleneck Visibility and Downtime Impact Quantification 

 

4.1.1 Flow-loss visibility: where capacity is being consumed 

The combined operational dataset (productivity logs, downtime cause records and product master data) created a final 

analytical table of 30 batches × 22 variables. Two critical TOC-related indicators were selected to quantify flow loss: 

• Total minutes of downtime, which reflects the actual direct non-productive time that costs available capacity. 

• Downtime: which is the proportion of downtime minutes to total minutes in an actual batch cycle provides a 

convenient management proxy for "how much of a batch's time was consumed by non-value activity".  
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In TOC terms, downtime translates to actual loss of effective capacity at or near the constraint, a failure loss 

throughput potential and an increase in flow variety. Such losses due to the constraint affect not only the constraint 

machine itself but also have a ripple effect along the shop in different downstream stages as schedule instability and 

increase of WIP and deterioration on delivery reliability. 

Downtime intensity and variability: The distribution of downtime minutes reveals whether a system is governed by 

numerous short disruptions (systemic waste) or by a few severe ones (episodic shocks): 

• Figure 3 (refer to Figure 3) shows the pattern and dispersion of downtime minutes per batch. A fat right tail 

corresponds to "few high-impact breakdowns", which is consistent with the TOC emphasis on eliminating the most 

throughput-reducing losses first. 

• The distribution of actual batch duration can be seen on Figure 4 (see Figure 4). Large variations in realised durations 

imply the flow is unstable, and therefore (in operational language) planning is more difficult and requires provision 

of buffer space. 

 

 

 

 

 

 

 

 

 

 

The distribution of the total downtime in minutes per batch is depicted for Case 1 in Figure 3. The distribution is right 

skewed, meaning that most batches have relatively low-down time but some of the batches have very high down time 

(have a fat right tail).  From a TOC point of view, such extreme downtime incidents are managerially Decisive, they 

dramatically reduce available effective capacity in or near the constraint and they induce flow variability to be 

abundant, which may translate into congestion and WIP. Thus, the figure also begins to validate the logic of 

prioritization for effect-based improvement: investigate and remove the handful of largest downtime batches (and 

their key causes) to save throughput and stabilize delivery performance. 

 

Figure 3: Downtime distribution (minutes). 
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In case 1, actual batch durations (minutes) are illustrated in Figure 4. The variance between realized processing times 

shows significant randomness across runs, as some batches run for far longer than the average time taken in a cycle. 

From a TOC standpoint, this variation is operationally significant since batches that are longer than normal eat up 

precious capacity at the constraint (or quasi-constraint), increase flow instability, and increase the degree of protection 

that we need to ensure on-time delivery (time/WIP). Then, the figure also encourages a management target on 

identifying either product mix or shift effects and disruptive conditions as the root causes behind those longest duration 

batches in order to have a handle towards stabilizing throughput by cutting down propagation of congestion. 

4.1.2 Concentration of losses: "few vital causes" for improvement focus 

A Pareto-style sum of downtime minutes by the "top factor" in each batch of downtime minutes shows whether the 

downtime is spread across many causes or concentrated into a few top drivers of disruption. 

Figure 4: Actual batch duration distribution (minutes). 
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Figure 5: Proxy Pareto chart of the top 10 downtime causes in Case 1 (total minutes). 

Figure 5 summarizes how downtime losses are distributed across the most frequent stoppage categories, showing a 

clear concentration of lost minutes in a small number of causes. Inventory shortage and machine adjustment account 

for the largest share of downtime, followed by batch change and machine failure, while the remaining causes 

contribute comparatively smaller losses. This concentration pattern aligns with TOC's "vital few" logics: reducing 

downtime in the dominant categories offers the fastest route to reclaim constrained capacity and stabilize flow. 

Managerially, the chart provides a practical prioritization map, directing improvement resources first toward the 

highest-loss causes (e.g., material availability discipline, setup and adjustment standardization, and reliability-focused 

actions) before addressing lower-impact issues such as calibration, labelling, or minor handling errors. 

4.1.3 Estimating downtime burden to prioritize interventions 

The study focused on validation of performance across recross, not technical superiority, to aid managerial 

prioritization (e.g., informing which products, shifts or operating contexts will likely experience high downtime), 

while estimating the minutes lost to downtime by approaches predictive in sign only. 

Table 1 condenses performance for downtime estimation into interpretable error metrics (minutes of downtime error) 

for operations management. 

Table 1: Case 1 Predictive performance of alternative models for estimating batch-level downtime minutes  

Model MAE RMSE R² 

Ridge 3.1043 4.3163 0.9469 

ExtraTrees 3.3408 6.0080 0.8911 

RandomForest 4.8201 7.3456 0.8126 

HistGB 20.2972 23.4773 -0.3538 
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In Case 1, Table 1 compares the accuracy of each of four regression approaches in estimating total downtime minutes 

per batch, using MAE and RMSE as directly interpretable "minutes-of-error" measures relevant to operational 

decision-making, along with R² as an explanatory power measure. it compares the accuracy of four regression 

approaches to estimating total downtime minutes per batch in Case 1. The best overall performance (MAE ≈ 3.10 

mins; RMSE ≈ 4.32 mins) and goodness-of-fit (R² ≈ 0.95, indicating that most of systematic variation in downtime is 

captured by a relatively simple, regularized linear specification) was achieved by the Ridge model. ExtraTrees and 

RandomForest do well, too, but at higher error and lower R², imply some benefit from non-linear modelling, but at 

less stable gains with Ridge in this setting. Conversely, The Histogram Gradient Boosting model exhibits suboptimal 

performance (MAE ≈ 20.30 minutes; RMSE ≈ 23.48 minutes) and achieves a negative R², meaning that it is overfitting 

versus naïve, so it cannot be used in a reliable manner for managerial purposes here. Collectively, these results provide 

for the decision-support rationale of the study: the burden of downtime can be estimated with high fidelity (to ~95% 

explained variance), allowing for the anticipation of expected capacity loss across different products, shifts and 

operating conditions, and the ability to rank interventions and buffering based on where the potential burden of 

downtime is forecasted to be greatest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plotting actual versus model-predicted downtime minutes for Case 1 (left plot in Figure 6) gives a visual check that 

regression model adequately captures the capacity loss at the batch level in terms of the magnitude. This is because 

the points are densely clustered around the implied line of equality (i.e. where predicted ≈ actual), meaning that the 

model replicates observed downtimes very closely, with little deviation across the spectrum of the batches, even for 

those that resulted in much greater loss. This alignment is important from a TOC decision-support perspective because 

it indicates that downtime burden can be predicted ex ante based on operational context (e.g., product/shift 

conditions), empowering the organization to know when the constraint is likely to take larger time hits so that they 

can prepare buffering, staffing changes, or targeted corrective maintenance before flow instability moves downstream. 

Figure 6: Actual vs. predicted downtime minutes for Case 1. 
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4.1.4 Managerial implications for TOC practice (Case 1): bottleneck improvement 

sequencing 

These findings strengthen TOC execution in two ways. First, the downtime distributions and Pareto concentration 

provide a defensible basis for deciding where to focus first a core TOC requirement when improvement resources are 

limited. Second, estimating the expected downtime expected by a loss, impact-based prioritization (which losses to 

remove first) and supports the "exploit/subordinate" steps by improving planning around expected constraint losses. 

In practical terms, managers can convert downtime information into a prioritized improvement backlog and align 

staffing, changeover planning, and operational controls to reclaim capacity where it yields the highest throughput 

benefit. 

4.2 Case Study 2: Constraint Protection Early Warning for Disruptive Failures as Flow Assurance 

 

4.2.1 Baseline risk structure: rare events with disproportionate operational impact 

The predictive maintenance dataset illustrates a genuine operational characteristic: faults are infrequent yet 

significantly impactful to flow. 

• Overall distribution: 0 = 9661, 1 = 339 

• Training split: 0 = 7729, 1 = 271 

• Untouched test split: 0 = 1932, 1 = 68 

Figure 7 illustrates the highly imbalanced situation of predictive maintenance, where non-failure observations are 

majority and failure events are minority. This low-frequency phenomenon is analogous to realistic plant operations 

where disruptions are infrequent but may lead to incommensurate throughput losses if the disrupted asset had been or 

becomes a bottleneck (constraint). Hence, the figure motivates a focus on evaluation beyond overall accuracy focusing 

on decision-relevant performance under scarcity (e.g., ability to detect failures with controlled false-alarm rates) for 

TOC-aligned constraint protection and flow stability. 

 

Figure 7: Case 2 Raw class distribution of machine failure events (AI4I 2020). 
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4.2.2 Training-only balancing: improving learning while preserving real deployment 

realism 

To strengthen learning without inflating performance, balancing was applied within training only, while the test set 

remained untouched. 

 

Figure 8: Training distribution before vs. after balancing. 

Class rebalancing (in training set only) (Figure 8) Prior to balancing, the training set is heavily imbalanced with 

respect to the non-failure class, and learning algorithms may overfit the majority pattern thus under-detecting rare 

non-existence, costly failure events. A large increase in the minority failure class relative to the majority class occurs 

post balance (strategy = 0.7) to provide a richer exposure to failure signatures and more informative decision 

boundaries for the learner. In TOC-minded view, this step enhances the early-warning method we use to safeguard 

the constraint, it minimizes the chance a rare disruption is systematically ignored and keeps the underlying 

methodology intact because there is no adjustment of the training only phase and into the evaluation environment. 

 

 

 

 

 

 

 

 

Figure 9: Test distribution (untouched). 
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The test-set class distribution is still highly imbalanced as the number of non-failure observations extremely 

outnumber that of failure cases. Keeping the test set unchanged is also a key methodological design choice that has 

been made intentionally: to maintain the true operational prevalence of breakdown events, since performance should 

be reported in deployment conditions rather than an artificially "easier" evaluation environment. In a TOC sense, this 

is important, because if rare failures occur at (or propagate to) the constraint, they can still lead to outsized throughput 

losses. As a result, Figure 9 lends support to the robustness and managerial generalizability of the findings: model 

metrics and threshold selections are evaluated under the same limited abundance of failures confronting managerial 

practice, thus creating a credible foundation for early-warning policies that preserve constrained capacity by avoiding 

inflated, test-data manipulation-based advantages. 

4.2.3 Comparative model performance: decision-support quality 

Instead of stressing on algorithms, our study compared alternative predictive approaches as decision-support 

mechanisms and assessed them based on metrics that are relevant to uncommon-event operations (e.g. PR-AUC, 

recall, and precision). 

Table 2: Case 2 Comparative decision-support quality (sorted by PR-AUC). 

Model ROC-AUC (mean) PR-AUC (mean) F1 (mean) Recall (mean) Precision (mean) 

LogReg 0.9819 0.9182 0.7952 0.8672 0.7437 

HistGB 0.9788 0.9139 0.7689 0.8819 0.6832 

ExtraTrees 0.9790 0.9094 0.7674 0.8708 0.6914 

RF 0.9803 0.9026 0.7734 0.8819 0.6915 

 

The cross-validated performance of four alternative classifiers on the prediction of failure risk in Case 2, evaluated by 

rare-event decision-context appropriate measures directly related to TOC-style constraint protection, is shown in 

Table 2. Discrimination is quite good with all models (ROC-AUC ≈ 0.979–0.982), suggesting that they can rank-

riskier observations higher than less risky ones. More crucially for operational use under class imbalance, PR-AUC 

is still high (≈ 0.903–0.918) implying that substantial precision–recall quality is retained by each model because 

failures are rare. Logistic Regression gives the best all-round score profile with the highest PRAUC (0.9182) and F1 

(0.7952) representing a balance in finding failures (Recall = 0.8672) and limiting false alarms (Precision = 0.7437). 

The tree-based models display similar recall (≈ 0.871–0.882), but slightly lower precision (≈ 0.683–0.692), 

suggesting a greater volume of operational "noise" per unit of capture, a critical management consideration, as false 

alarms initiate expensive inspections, stoppages, or maintenance interventions. Altogether the results suggest failure 

risk can be modelled as providing more consistently strong decision quality, which supports the TOC-oriented aim of 

the study: to provide credible early-warning signals that enable managers to intervene before disruption events convert 

into throughput loss and thereby protect constrained capacity and stabilize flow. 

As shown in Figure 10, Precision–Recall (PR) curve for the Case 2 failure-risk classifier calculated on the unseen test 

split reveals a very good PR-AUC of 0.9066. In the predictive maintenance context where failure events are rare, this 

is manifested in PR analysis presenting a more actionable perspective than accuracy-based summaries, by directly 
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delineating the precision–recall tradeoff between capturing disruptions (recall) and limiting false alarms (precision). 

The curve shows that high precision is maintained over a wide range of recall levels before falling off at high recall, 

meaning an accessible early-warning footprint can be sustained without burdening operations with superfluous 

interventions. In terms of TOC, such a performance reinforces protection of the constraint: it provides managers with 

the ability to target proactive measures towards only the most credible high-risk signals, reducing the risk that rare 

disruptions will result in outsized throughput loss and flow disturbance. 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.4 Ensemble risk scoring: governance-ready early warning and threshold choice 

An ensemble from the best models created a more stable risk-scoring mechanism. Since both accuracy and F1 score 

are balanced measures, the decision threshold was tuned on the out of fold training predictions in a way that reflects 

managerial preference for balanced detection performance. 

• OOF ROC-AUC: 0.9807 

• OOF PR-AUC: 0.9168 

• Selected threshold (max F1 on training-only OOF): 0.9864 

The decision threshold versus F1 corresponding out-of-fold (training-only) of the classification in Case 2 is shown in 

Figure 11. This came out from the curve showing the extreme sensitivity of predictive performance to threshold in 

rare-event settings: thresholds too low inflate type I errors with false alarms, thresholds too high inflate type II errors 

with missed failures, both jeopardizing constraint protection. The horizontal dashed marker marks the chosen 

operating point, which maximizes out-of-fold F1 and therefore makes the target level of aggressiveness of failure risk 

flagging more transparent and reproducible. The notion of "risk appetite" here translates into managerial governance 

Figure 10: Precision–Recall performance on the untouched test set (Case 2). 
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from a TOC decision-support perspective; this visualization makes clear the "risk appetite" choice, permitting 

practitioners, when deploying early-warning policies, to operationalize the relative cost of a preventive intervention 

with the throughput loss and schedule instability risk stemming from an unexpected breakdown at (or near) the 

constraint. 

Figure 11: F1 vs. threshold curve (OOF). 

4.2.5 Untouched test performance: operationally realistic validation 

We performed the final evaluation on the untouched test set as this more accurately represents realistic deployment 

conditions. 

Table 3 shows the performance of the ensemble on the unseen test set, which is a more realistic evaluation of the 

early-warning model in Case 2 from an operational perspective. The discrimination is still very high (ROC-AUC = 

0.9896), meaning that the relative model ranks of high and low risk states are still reliable across thresholds, and the 

PR-AUC of 0.9066 confirms that model alerts maintain high quality under the extreme class imbalance representative 

of real maintenance environments. Overall accuracy is high (0.9945), however, the more decision-relevant failure-

class metrics are the critical managerial signals: precision for Class 1 is 1.0000, suggesting that when failure alerts 

are issued they may be highly trusted as it is unlikely they would lead to pointless stoppages and inspections, while 

recall of 0.8382 shows that the model is able to identify large proportion of failure events before they develop. This 

results in an F1-score (0.9120) that reflects a very good compromise between detection coverage and operational 

noise. These results directly speak to constraint protection in TOC - With a high precision and good recall, such a 

model presents an opportunity to generate low false-alarm, high credibility warning signals; and the proactive 

maintenance scheduling and resource allocation would therefore reduce unanticipated downtime at (or propagating 

to) the constraint, helping to stabilize flow, contain WIP, and protect throughput and delivery reliability. 
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Table 3: Case 2 Test performance summary 

Metric Value 

ROC-AUC 0.9896 

PR-AUC 0.9066 

Accuracy 0.9945 

Failure-class precision (Class 1) 1.0000 

Failure-class recall (Class 1) 0.8382 

Failure-class F1 (Class 1) 0.9120 

 

The confusion matrix on the completely untouched test set is reported in Figure 12, to summarize the classification 

results obtained by the ensemble of the labelled data on deployment-realistic conditions. The model attains 0 false 

positives (no-failure cases wrongly flagged as failures), meaning that the alerts generated are highly actionable and 

unlikely to create operational noise through unnecessary machine stops or inspections. Simultaneously, it successfully 

detects 57 out of 68 failure events even when 11 failures are not detected. On TOC lens, this pattern supports to 

protect the constraint because when system can execute targeted preventive action from breakdowns with minimal 

disruption to routine execution, while still intercepting majority of high impact breakdowns, flow will be stable as 

well flow is not going to be destabilized due to depleting constrained capacity. From a managerial perspective, these 

residual false negatives reinforce the necessity of mission alignment by aligning thresholding on the risk appetite (e.g. 

slightly more alerts acceptable if failure cost at the constraint is higher) and reinforce governance with recalibration 

intervals as the operating condition drift. 
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Managerial implications for TOC practice (Case 2): constraint protection and maintenance governance 

In Case 2, we discuss how TOC can benefit from an AI-enabled early warning that protects the constraint from 

disruptive stoppages increasing flow stability and throughput protection. The achieved recall (~84%) suggests that 

most failure events are detected, but the very low false-positive tendency makes it possible to trust the alerts and really 

operationalize them. From TOC perspective, this fortifies exploitation and subordination by minimizing schedule 

variability and avoiding unintentional constraint starvation or blocking. From a managerial perspective, the output is 

amenable for embedding within maintenance governance as a risk-based prioritisation layer: informing inspection 

intensity, maintenance scheduling and escalation rules according to disruption likelihood, rather than a reactive 

breakdown response return agenda. 

4.3 Explainability as Action Guidance: Translating Signals into Interventions 

In order to turn predictive results into actionable operational lines (instead of "black-box" outputs), permutation 

importance was calculated upon the test set within the final model input space (i.e., after preprocessing and variable 

selection). This also fits with business/operations sense where: explainability should drive intervention, not just 

provide description of statistical relationships. 

 

Figure 12:Confusion matrix on the untouched test set (Case 2). 
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Table 4: Case 2 Permutation importance (named features, test set). 

Feature Permutation importance (mean) 

HDF 0.0270 

OSF 0.0153 

PWF 0.0115 

power_proxy -0.0037 

Torque [Nm] -0.0046 

Rotational speed [rpm] -0.0084 

Tool wear [min] -0.0134 

wear_speed -0.0143 

 

The permutation importance results that translate the failure-risk model of Case 2 into TOC-relevant, actionable levers 

are shown in Table 4. The most positive signals, HDF (0.0270), OSF (0.0153) and PWF (0.0115), are also the most 

decision-relevant ones, permutations of this result in highest decrease in model performance with respect to baseline. 

Operationally, these indicators can anchor an early-warning governance layer (dashboards, escalation rules, and 

preventive actions) to protect constrained or near-constrained resources from disruption-driven capacity loss, thereby 

supporting constraint protection and throughput stability.  The other features display very little negative importance, 

and this should be seen in terms of correlation or redundancy (or interaction) rather than an indication for a bad effect. 

Management focus should, therefore, be on control and SOP triggers related to HDF/OSF/PWF with lower ranked 

variables informing management as context signals which do not add much extra value in this dataset. 

The most decision-relevant drivers of the Case 2 failure-risk model are outlined in Fig.13, determined by permutation 

importance on the untouched test set to facilitate deployment-realistic interpretation. The strongest positive 

contributors due to the best contributors (HDF, OSF, PWF) exhibit the largest decrease in predictive quality when 

shuffled implying that they carry more actionable signal for TOC-aligned constraint protection, i.e., information 

indicating where it is currently most important to take actions that remove variation potentially leading to capacities 

lost from disruptions at or close to the bottleneck. On the other hand, power proxy, torque, rotational speed, tool wear 

and wear–speed interaction have small but negative importances, which are likely due to a feature 

redundancy/correlation rather than operational irrelevance; in this sense managerial focus should be on monitoring 

and escalation rules addressed to these high-positive indicators while dealing with the rest of the variables as 

contextual support for diagnosis and governance. 
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Figure 13: Permutation importance on the untouched test set (named features). 

 

 

Figure 14:Positive-only permutation importance on the untouched test set (named features). 

Figure 14 shows a simplified permutation-importance perspective, keeping only positive contributors on the 

unbalanced test set for which factors consistently contribute towards improving failure-risk prediction under 

deployment-realistic prevalence. The superiority of HDF over OSF and PWF suggests that these signals provide the 

most reliable (i.e., less conflicting) and decision-critical information for the early-warning mechanism, hence forming 

a more robust basis for TOC-aligned constraint protection, that is, aligning monitoring, control limits, and PM triggers 

to reduce disruption-driven capacity loss at or near the system bottleneck. By removing negative importances the 

figure provides a theory rather than just a chart managers could use for designing governance: it tells them what 

metrics to base their dashboards and escalation rules on, in order to ensure throughput is protected and production 

flow stabilised. 
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Managerial implications for TOC practice (Explainability): dashboards, SOP triggers, and escalation rules 

These explainability results enable operationalization. First, they facilitate the dashboard design by focusing on the 

most decision-relevant signals and thereby helping managers manage cognitive load. Second, they drive the design 

of SOP triggers (like monitoring thresholds and escalation policies) by cantering governance around the most stable 

indicators. Finally, they provide support for TOC constraint protection by offering early, auditable and explainable 

interventions  crucial for successful organizational adoption in production context where trust and accountability are 

of utmost importance. 

4.4 Cross-Case Synthesis: How AI Strengthens TOC Execution End-to-End 

Across both cases, the results support a unified business contribution: AI strengthens TOC execution by converting 

operational data into constraint-focused decisions. 

i. Constraint visibility (Case 1): downtime patterns and cause concentration clarify where and why flow is 

being restricted. 

ii. Impact quantification (Case 1): estimating downtime burden supports impact-based prioritization and 

improvement sequencing. 

iii. Constraint protection (Case 2): early warning provides a practical mechanism to reduce disruptive 

stoppages under realistic prevalence. 

iv. Actionable guidance (Explainability): named importance results translate prediction into governance levers 

(dashboards, SOP triggers, maintenance prioritization). 

In combination, these findings frame AI not as some technical terminus but as a managerial capability that can 

enhance the speed, accuracy, and consistency by which TOC decisions are taken to support stability in throughput, 

reliability over schedule expectations, and more effective deployment of effort on the operation's improvement. 

5. Conclusion 

This study advances a business-oriented perspective on AI-enabled Theory of Constraints (TOC) by demonstrating 

how machine-learning analytics can be structured into executable, constraint-focused decisions for manufacturing 

flow improvement. Using two complementary cases, the paper shows that AI can (i) make constraints operationally 

visible through quantification of downtime burden and flow-loss indicators, (ii) support managerial prioritization by 

revealing the "vital few" drivers of lost capacity via Pareto-style loss concentration, and (iii) extend TOC from reactive 

diagnosis toward proactive constraint protection through rare-event early-warning for failure risk under deployment-

realistic prevalence. Importantly, the contribution is not positioned as algorithmic novelty, but as a decision-support 

pathway that connects heterogeneous shop-floor data to TOC execution, including improvement sequencing (exploit–

subordinate–elevate), throughput protection, and governance-ready intervention design supported by explainability. 

The study is limited by the small and context-specific dataset in Case 1 and the use of a benchmark predictive-

maintenance dataset in Case 2, as well as by emphasizing operational performance metrics rather than fully monetized 

throughput-accounting outcomes. Future research should validate the framework across multiple sites and sectors, 

incorporate richer production-system evidence (e.g., queues, WIP dynamics, changeovers, and maintenance work 

orders), and explicitly model economic trade-offs linking early-warning and downtime reduction to throughput, 

service penalties, and intervention cost. Further work should also examine implementation governance, such as 

threshold policies, recalibration under drift, and human–AI routines for acting on explanations, to clarify how AI-

enabled TOC can be sustained as an organizational capability within continuous improvement practice. 

http://www.ijtbm.com/
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